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Abstract—A numerical technique is presented for the solution of system of Fredholm integro-differ-
ential equations. The method consists of expanding the required approximate solution as the elements
of Alpert multiwavelet functions (see Alpert B. et al. J. Comput. Phys. 2002, vol. 182, pp. 149—190).
Using the operational matrix of integration and wavelet transform matrix, we reduce the problem to a
set of algebraic equations. This system is large. We use thresholding to obtain a new sparse system; con-
sequently, GMRES method is used to solve this new system. Numerical examples are included to
demonstrate the validity and applicability of the technique. The method is easy to implement and pro-
duces accurate results.
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1. INTRODUCTION

In this paper we solve the system of Fredholm integro-differential equations of the form [1—3]

n b
Z(Dlj(x, w, uy”, uj( ) 4 Jk,j(x, 1)G(u,(1), ...,un(t))dt] = f(x),

(1.1)
j=1
i=1,...,n, xe][0,1],
with boundary or the supplementary conditions
0) (7a)
Hrj(uj (xé): ...,Mj (xg)) = dr"
,, (1.2)
j=1,..n, n, = maxn,, r = ny,, x:€[0,1],
4 1<i<n U Z 4 :

j=1
where the functions k;(x, 7) and f(x) are analytic functions on the interval [0, 1], G; are the linear combi-

(n
nation of u(x), ..., u,(x) and H, are the linear combination of ufo) (X2), o5 U;

i,j=1, ..., n, we suppose the functions

@)
" (xg). In addition for

(1) (”du)

Dy(x,upu;, ..., u

(ng)
.. 1 4
are analytic in terms of u;, uj(. ), ou

;"L as

M.
(ng) !
(D i U}
Dij(xa u_/'a uj EIRERE] uj ’ ) = zujluj (X),
=0
where “’jl are constants.

! The article.is published.in.the original.
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SPARSE REPRESENTATION OF SYSTEM 1469

The concepts of integro-differential equations have received much attention in recent years. Several
numerical methods were used such as the cubic spline method [4], Petrov-Galerkin method [5], the Tau
method [6], spline wavelet method, [7], Legendre wavelet method, [8, 9], the Chebyshev and Taylor col-
location method, [10, 11].

Systems of integro-differential equations have a strong physical background and many practical appli-
cations in scientific fields such as population and polymer rheology [12, 13]. Recently Abbasbandy and
Taati [14] have introduced the operational Tau method to solve a system of nonlinear Volterra integro-dif-
ferential equations with a nonlinear differential part. A simple operational approach, using the Adomian
decomposition method, has been proposed for the numerical solution of systems of nonlinear Volterra
integro-differential equations in [15]. This method leads to a system of linear algebraic equations. The
operational approach to the Tau method is used for the numerical solution of a nonlinear Fredholm inte-
gro-differential equations system in [16]. A Sinc-collocation method is considered by Zarebnia et al. [17]
to solve system of nonlinear second-order integro-differential equations. Dehghan et al. used Legendre
multiwavelet Galerkin method for weakly singular integro-differential equation in [8].

Wavelet theory is relatively new and an emerging area in mathematical research. It has been applied in
a wide range of engineering disciplines, as wavelets have advantages over traditional Fourier transforms in
accurately approximating functions that have discontinuities and sharp peaks. Wavelets have been applied
in signal analysis, numerical analysis, optimal control problems, multi-scale phenomena modeling and
pattern recognition [18]. The smooth orthonormal basis obtained by the translation and dilation of a sin-
gle function in a hierarchical fashion proved very useful to develop compression algorithms for signals and
images up to a chosen threshold of relevant amplitudes [19—21].

In this paper we use Alpert multiwavelets [20, 22] to solve Eq. (1.1) with boundary or the supplemen-
tary conditions (1.2). The outline of this paper is as follows. In Section 2, we describe the basic formulation
of the Alpert multiwavelet systems required for our subsequent development. In Section 3 the proposed
method is used to approximate the solution of the problem. As a result a set of algebraic equations are
formed and a solution of the considered problem is introduced. Restarted GMRES method is used to
solve this system. In Section 4, we report our numerical findings and demonstrate the accuracy of the pro-
posed numerical scheme.

2. ALPERT MULTIWAVELET SYSTEMS
2.1. Multiresolution Analysis

For functions ¢ € L*(R), m =0, ..., r — 1, let a reference subspace or sample space ¥ be generated as
the L?-closure of the linear span of the integer translates of m, namely:

V, = closL2<(|)m(. -k)y:keZy, m=0,..,r-1,
and consider other subspace

V. = clost(d)fk:keZ), jeZ m=0,..r-1,

J

where ¢; k= ¢"(2x —k),j, ke Z,m=0, e,r—1.

Definition 1 [23]. Functions ¢” € L*(R), is said to generate a multiresolution analysis (MRA) if they
generate a nested sequence of closed subspaces V; that satisfy

i) ...cV,cVycV,c...,
ii) clost(U Vj) = L}(R),
jez
i) UV, =0, (2.1)
jeZ
iv) f(x) € V= fix+27) € Vi f2x) € V.,
V) {¢"(.—k)}xc 2 form a Riesz basis of V.

If ¢ generate an MRA, then ¢™ are called scaling functions. In case the different integer translate of ¢™

are orthogonal and where is with respect to the standard inner product {f, g)= r f(x)g(x)dx for two func-
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1470 BEHZAD NEMATI SARAY et al.

tions in L2(R)), denoted by ¢"(. — k)L ¢'71 form#m, k# k , the scaling functions are called an orthogonal
scaling functions.

As the subspaces V; are nested, there exist complementary orthogonal subspaces W/ such that
Vi = V,OW, jeZ,
here and in the following @ denotes orthogonal sums.

This give rise to an orthogonal decomposition of L*(R), namely:
L’(R) = g
r) = B

Definition 2 [23]. Functions yu € L*(R) are called wavelets, if they generate the complementary
orthogonal subspaces W, of an MRA, i.e.,

W, = clost(w,'fk,keZ% jeZ, m=0,..,r-1,

J
where v}, = y"(2x—k),j, k € Z.

If, v, L ‘V%/} forj#j,m#m and k # k if < 2y, 2" ‘Vf-;j;} >= 8,8, ;8,,» then y”are called

orthonormal wavelets.
Now we define Alpert scaling functions and its corresponding multiwavelets according to above MRA.

2.2. Construction of Scaling Functions

Suppose P, is the Legendre polynomial of order r and r is any fixed nonnegative integer number and let
T fork=0, ...,r— 1 denote the roots of P.. The interpolating scaling functions (/SF) are given by [8, 24, 25]

d)k(t) _ szLk(2t— 1), te[0,1],
= k

0, otherwise.
Where o, k=0, ..., r— 1, are the Gauss-Legendre quadrature weights
0= — 2
rP.(t)P,_ ()
and L,(9), k=0, ..., r—1, are the lagrange interpolating polynomials [22]

r—1

-1,
Lo = T (&2
iz0izk KT

that they have characterized by Kronecker property L,(t,) = 5, where

5, = 1, i=k,
0, i#k.

We can expand any polynomial g of degree less than r with the function ¢, ..., ¢"~! that they formed an
orthonormal basis on [0, 1)

g() = > db' (1)

k=0
where the coefficients are given by

d, = @‘g(%k), k=0,..,r-1,

and

Let d)/},(t) ,k=0,..,r—1,/=0, .., 2/ — 1, be obtained form ¢*(¢) by dilation and translation
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SPARSE REPRESENTATION OF SYSTEM 1471

o5(1) = 279 (2t-1) (2.2)

where J is any fixed nonnegative integer number.
Note that we have the following orthonormality relation

1
[0l (e = 88,
0

2.3. Construction of Wavelets

The two-scale relations for the r-th order Alpert multiwavelets are in the form [20]:

r—1 r—1
V) = 3 A X) + Y ey (23 1), (23)

j=0 j=0
As we have 272 unknown coefficients {#} in (2.3), we use the following 2r(r — 1) vanishing moment condi-
tions and 2r orthonormal conditions to determine them.

1. Vanishing moments
1
I\Vi(x))cj =0, for i=0,1,...r—1, j=0,1,..,i+r—1. (2.4)
0

2. Orthonormality
1

I\Vi(x)qu(x) =8, fori,j=01,..,r=1. (2.5)
0

2.4. Two Scale Relations

The representation of two scale relations is proposed for scaling functions and wavelets as

0°(0) = D gta1 020 48 1§ (2x- 1),

Jj=0

r—1
k 0 j 1 j
4 (X) = zhk+ 1Lj+ 1¢/(2x) + hk+ 1Lj+ 14)/(2)6 - 1)
j=0
By using the function ¢*(x) and y*(x) for k=0, ..., r — 1, we construct the filter coefficients gi ; and hi ;=
0, 1. In these representation of two scale relation, four matrices (7 x r) is used to show the filter coefficients

gf,j and A’ [1=0,1,as

ij>

0 0 1 1

. i --- 8ir 1 g -+ 8ir
G = . s G = )

0 .0 1 1

81 8rr 8r1 8r

0 0_ 1 1

hiy ... hy, hi ... hy,

H = , H =,

0 0 1 1

hrl hrr hrl hrr
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1472 BEHZAD NEMATI SARAY et al.

The matrices G° and G' consist of the filter coefficients of two scale relation for scaling functions and their
components are given by following equations

A J@d)k(%k) : (2.6)

T+ 1
gi = it (%

These equations are obtained by using the interpolating property of scaling functions.

In general, the two scale relation for the neighbour scales J and J + 1 is given by the following matrix
form

). 2.7

Dj(x) = G0}, (%), (2.8)
where 7 define the transform matrix between two neighbour scales for scaling functions and is getting by
G..0
Gy =1: - : , (2.9)
O cee G Jo AT+

r2,r2

where ®@'(x) consist of 72/ bases for V; and G = [G°G']. We note that the filter coefficients of two scale
relation for wavelets is constructed in Subsection 2.3.

Hence the wavelet transform matrix [26] between y’;, and @/, is obtained as

y; = T,0], (2.10)
where T is a (r2/, r2’) matrix which are obtained by the following scheme. Suppose that H = [ H°H'] and

H..0
Hy=|.. . , 2.11)

0..H

JoAJ+1
r2,r2

By using these matrices, we get
1
—(Gox Gy x...xG,_y)

5
1
2—J(H0><Gl X...xGyy)

1
F(HIXGZX...XGJ_I) ' (2.12)

2.5. Function Approximation

It can be verified that V; @ W, =V, |, thus we can write V; =V, ® (@f;loWi) and we have two kind of
basis sets forJ € N

D)(x) = [§70(x), s 0o (X)s[ors @) o (), O o (O] (2.13)
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SPARSE REPRESENTATION OF SYSTEM 1473

W) = [00.0X), ey 0.0 (X, [Wo,0(X)s oo Wo g (X)), .

. . . 71 . (2.14)
'7|\V./—1,O(x)a LEEE) Url.l—l,O(x)ln LEEE) \VJ—I,ZJ’]—I(X)’ L) Url.,_l’szl_l(x)] .
Now any function f(x) on [0, 1] can be approximated using scaling functions as
r—12'-1
fo) = Pif = 3 ¢ i (x) = CD)(x), (2.15)
k=0/=0
and the corresponding wavelet functions as
J— 12 -1
flx)= P)f = Z {Co o(l)o ot z z d; na l(x)} = DT\P;(X)s (2.16)
j=07=0
where
1 hyg
¢ = [fesxde = [0, (2.17)
0 Iz
and
=L r=0..,2-1
2
These coefficients may be computed using Gauss-Legendre quadrature [24, 27].
P el S G+ 1)), k=0,.,r—1, 1=0,..2-1. (2.18)

Lemma. Suppose that the functton f:10, 1] — R s r times continuously differentiable.

Then P,f approximates f with mean error bounded as follow [20]:

[Pr-A <22
4"

rlxe[0,1]

Also a function p(x, 7) of two independent variables for 0 < x < 1, and 0 < 7 < 1, may be expanded in
terms of interpolating scaling functions as

P00~ 33 P D,(1) = OF (x) PO(1), (3.1)

i=lj=1
where Pisan N x N matrix as

P --- Pin

PNt -+ PNN

with N = 2/ and
11

P = I J’p(x, 1D (1) D,(1)dtdx.

00
We used (2.18) to get
_J |0, |© -
P = [ / ST+ 1), 275+ 1)), (3.2)
wherei=ri+ (k+1),j=r + k' + 1), k, k' = LF—1land /[, =0, .., 2 —1.
By using Eq. (2.10), the elements of matrix D in Eq. (2.16) are obtamed as
D'=CT,. (3.3)
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1474 BEHZAD NEMATI SARAY et al.
Also the function p(x, f) is represented by using wavelets in the same manner

P=r1PT}, (3.4)

where
N N .
P 1) = ST pFI)W(1) = BT (x)PE(),
i=1j=1

and D and C are (m x 1) vectors with m = r2/ given by

0 r 0 r 0 ’ T
D = [CO,O""i ~-‘dlfl,0,---:djfl,03 "d./—l2171—1,”.’d./—1,2!71—1] P} (35)
0 r 0 r T
C = [C'IJO’“.’CJ’O|“.|C.I,2J—]’“.’c./,2',—l] . (3.6)

3.1. The Operational Matrix of Integration
The integral of vectors ¥(x) and ®’(x) can be expressed as

I\P;(r)dt ~ 1,97(x), (3.7)

0

I@;(t)dtz 1,07(x), (3.8)
0

where /[, and I, are (N x N) operational matrices of integration for Alpert scaling functions and multiwave-
lets respectively. The matrix /,, can be obtained by the following process [27]. Using Eq. (3.8) we have

=12 -1

IQ) (t)dt = z z Lo s ks 1), e i +1)¢J1(x)

k'=0I'=0

3.9)

Now we use Eq. (2.18) to obtain

27+ 1) 2R+ 1)

-J -J
7 (o 7 o
Lodirs s v rrscesny = 2’ "2!1 I dy(ryde = 2° 3’1 J dy(1)dr. (3.10)
0 /

2./

To find the entries of matrix /, we assume the following three cases.

Case 1. /' < /. The support ofd),, is [1 I+ 1} and2/(t, + 1)< —l- . Thus we get
2" 2 2’

[1¢]1r+(k+l),/'r+(k'+l) = 0. (3.11)

Case 2. /' = I. Changing the variable 2/t — /= T, x we have

-J ‘Ek
2 @y ok
ol sy rreesny = 2 /7kj'(|)]1(t)(dt),
0

These coefficients may be computed using the Gauss—Legendre quadrature as
- /cok ~ Oy k,n A
Uglirs kst rrsgesny = 2 z ¢ (T4 1)) (3.12)
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SPARSE REPRESENTATION OF SYSTEM 1475

Case 3. /' > /. Again the support ofd),, is [[l H—IJ and 2™ J(rk +l)> - >l+ l+—1 . Thus we obtain
2’

2’ 2’

[+1
S < 1
2 @y k 2 [y k _J @, [0
odis sty rrsesny = 2 /7k I¢Jl(t)dt =2 /71{'[4) (Ndt =2 /?k /7k (3.13)
1 0

Now we use these three cases to obtain the operational matrix of integration as

MP ... P Pl

MP . PP
_J :

]¢ - 2 . .. . ’
M P

| M

where M and P are r x r matrices which can be obtained by the following equations:

’(D ~ () Aon ,
[M]k+1 k'+1 — k Z k(l) (Tk'Ti)’ kak = 05 15 "'7r_1’

O [0 ,
Pliviwsr = J;( Tk’ kk'=0,1,..,r—1,

Using Egs. (2.10), (3.7) and (3.8) we get
j‘P;(t)dt =T, I@}(t)dt = T,1,0%(x) = T,1,T,"¥,(x), (3.14)

0 0
comparing Egs. (3.7) and (3.14) we get
1

1, = T,0,T;, (3.15)

4. DESCRIPTION OF NUMERICAL METHOD

In this section, we solve the system of integro-differential equations of the form (1.1) with boundary
value or supplementary conditions (1.2), by using Alpert multiwavelets.

We know that u; “ for J=1, ..., nis the largest derivative of &, Assume that we expand u; K using Alpert

multiwavelets as

w, (X)= U¥Y)(x), j=1,...,n, 4.1)
where U, is an (N x 1) unknown vector.
By integrating from both sides of Eq. (4.1), and using Eq. (3.7), we get

X

ny Tx - nd—l nd_—l . - .
ju,f(t)dejj\PJ(t)dt, w” ) -w’ (0)=UILYNx), j=1,..n. 4.2)

J
0

ng —1
Letlﬂ=ujd’ (0),k=1,...,n,,andJ=1, ..., n,so we have

0 ()~ UL () 40, = 1, n, (4.3)

j ‘i1

Again by integrating from both sides of Eq. (4 3), we get

J

0w’ (0~ UL Iq!,(z)+jx dt, j=1,...n,
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1476 BEHZAD NEMATI SARAY et al.

or
ng =2 ng =2 r
w' (x)-u ()= ULYNx)+Mx, j=1,..,n, (4.4)
SO
n, -2
W' )R ULY(X)+0x+h,, =1, (4.5)
By continuing this process, we get
n,—ao o a-—1
d; r X
o ~ U. — <
u’ (x) U;Iﬁ‘PJ(x)+§7»],(a_l)!, I<as<n,, (4.6)
and
", ng —1
L x’ .
u(x)~ U;IW ‘P,(x)+z7»j,m, j=1,..n. “4.7)
I=1 4 ’
-/
Now we approximate ( X Y in the Eq. (4.6) as
a-—1[)!
a-1
(x m ~X®0(x) = X1, Wi(x), [=1,..,a, 1<a<n,. (4.8)
a-—1/)! I
Where )_(jl ,J=1,..,n I=1,.., aarethe (m x 1) vectors which their entries can be found using Eq. (2.17).
o-1
Note that we are not required to approximate all of the ( d ' because
a-1)!

these functions repeat foreveryj =1, ..., n. Let X;, = /_Y;,T;I . Using Eq. (4.8), in Eq. (4.6), we get

W' @)= LY + Y XY, 1< a<n, @9

J
I=1
The functions ki (x, 7) and fi(x) in Eq. (1.1) can be approximated as

ky(x, t) = DUNK; DT (x) = ¥7(1) T, KT, ¥, = P (0K;¥, (4.10)
k,
and
fx) = EOYx) = ET,' ¥, = FY), (4.11)
%/_/

T
Fl'

where Kj ,i,j=1,...,nare m x m matricesand F;, i= 1, ..., nare am x 1 vector, which can be obtained as

(K)o = j{ e, r)@»;l(r)dt}(@»f,l(x)dx = 2’@ @kg<2’<%k+1), @+, (412)
0-0

: =
(F)oy = [(@); (0dx = 27 2R G+ 1),

(4.13)
v=rl+(k+1), o=rl'+(k'+1), LI =0, ...,2J—1, kk=0,..r-1.
Applying Egs. (4.9)—(4.11) in Eq. (1.1), we get
n ", 1
ZD[j[x, (U} 1,V + ij,)(;,‘}’;} (U} 1Y)+ ij,)(;,‘l’;), U; ‘P}j
j=1 /=1 /=1 (4.14)

ng

1 o a
+ jG,-[(UI 1,"5(r) + zx”XL‘PSm} [U;m (1) + zxn,xz,\l!:(r)j] WK, Wi(x)dt = F¥(x),
0 =1

I=1
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SPARSE REPRESENTATION OF SYSTEM 1477

or

n n"/ 1
ZD,,[X, (u}zﬁ; " ij,x},\{f;}, (U}[le; " ij,xj,w;j, u;qf;j

j=1 I=1 =1

(4.15)
G[[U,I j%(r)%(z) Yk j%(r)% (r)] [UTI j%(r)% 0+ 3 s j\PS(r)LPT(r)D
=1 =1 0

K;¥)(x)dt = F;¥)(x),
The orthonormality of these multiwavelets implies

n ndj 1
ZD,,(x, (U; 1,V + ZKj,)(;,\{';], (U} 1,9+ ZXj,)(;,‘P;], U;‘I’;]
j=1 /=1

I=1

(4.16)
+ G,{[U{Iw”l + ZAI,XT,J, [U,T,I\Vd” + Zx,,,x;,D K,¥)(x)dt = F¥)(x).
I=1 =1
Using wavelet—Galerkin method, we obtain
L/ n ", 1
J(Z DU{x, (U} 1,V + ij,x},\}f;j, (U; 1,9+ ij,x},\y;j, U ‘P;j
0 y=1 I=1 /=1
(4.17)

+ G,{(UTI:,M + ZM/XTIJ, cees [UI,[:,% + ZX”IXLJ] K,-,-‘P;(x) - F,T‘P;(x)] \|/jk (X)dx = 0,
=1 =1

Jo=—1,.,J=1, k=0,...r—1, 1=0,..(2-1),

k k
where we assume y~, ; = ¢, . So we have

El.=ZDU[[@I';”f+2x,,)(},],... (U[ +Z ,X,,j, ]
=1

Jj=1

na, g, (418)
+Gi[(UTIWJI+ZXIIXTIJa '--s[U;Iw{IM"'Z}\’n/XZI\JJI(U—F? = 09
=1 =1

i=1,...,n
Applying boundary or supplementary conditions (1.2), we get

ndj 1
Hrj([(j;]\u“{l;(xé) + ij/XjT/lP;(xg)], cees (U,T]\l,;q’;(xg) + 27‘7/)(;/\{/;(3“5)} U/TlP;(xg)} = d,, (4.19)
=1 =1

where we have » unknown elements with » equations. Thus we obtain the square system as

v =D,
T 4.20
U: [Uql-a---, U:n}‘*lla---a}\‘lnd:"")\‘nl""’)\‘n,nd] ( )
also Disa (nN + r' x 1) vector that D, |, x =1, ..., N, i=1, ..., n are constant elements of £; and D, |, =

d,x=nN+1,..,nN+F.

4. 1. Truncation of Coefficients
Let us assume that a function f(x) € L?[0, 1] is approximated by its projection on some scale J + 1, so

that ||/ — P, ./l <€llfll,. Where € is the desired accuracy of the approximation. We now seek to approxi-
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1478 BEHZAD NEMATI SARAY et al.

mate fon the next coarse scale, J and consider the resulting error introduced by the coarsening. We divide
[0, 1] into 27 subintervals and give the error on each subintervals. By using orthogonality the error on some

subintervals /is || P}, . f— P,fll, = ||d,J||2. Therefore we have [20]

|25~ Pl <€l P) A (4.21)
We truncate the J + 1-scale representation when
|2, <e27”| P, A (4.22)

By using this equation, set to zero all coefficients which satisfy that constraint. By this method, we can
reduce the number of coefficients in the representation, while maintaining the specified accuracy €, also,
the linear system of equation (4.20) is reduced to a new sparse linear system.

4.2. Restarted GMRES Method

Recently, a method called GMRES has received a considerable attention by numerical linear alge-
braists in the context of solving large and sparse linear systems. The GMRES method by Saad and Shultz
[28] is one of the popular iterative methods to solve sparse and large linear systems. The GMRES gener-
ates an approximate solution whose residual norm is minimum by using a Krylov subspace. In this paper,
we use restarted GMRES algorithm [29] for this purpose, firstly we represent Arnoldi’s algorithm.
Arnoldi’s procedure is an algorithm for building an orhogonal basis of the Krylov subspace «,,. The N-th
Krylov subspace define as follow

«, (T, v) = span{v,, v, ..,[" v }. (4.23)

Next, Arnoldi and Restarted (GMRES) algorithms will be stated

Algorithm 4.1. Arnoldi

1. Choose a vector v, such that ||v,||, = 1
.Forj=1,2, ..., mdo:
.compute h; ;= (U'v;, v)) fori=1,2, ...,j
wi=0v, v) fori=1,2,..,j
=l
Afhy 4 ;=0 then stop
-Vig1 = Wj/hj+ 1,j
. End do.

Where V,, isa N x m matrix with column vectors vy, ..., v,,. Also H,, isa (m + 1) x m Hessenberg matrix
whose nonzero entries 4, ; are defined by Algorithm 1.

Algorithm 4.2. Restarted (GMRES)

1. compute ry= D —T'U,, B = ||ryll, and v, = ry/B

0NN BN

2. Generate the Arnoldi basis and the matrix H,, using the Arnoldi algorithm starting with v,

3. Compute y,, the minimizer of ||e, — Hny|, and U,,= Uy + V,,y,,
4. If satisfied, then stop, else set Uy = U,, and goto 1

5. NUMERICAL EXAMPLES

In this section, four numerical examples are presented to illustrate the validity and the merits of this
technique. As mentioned before one main merit of this technique is the generation of a sparse matrix. This
advantage is illustrated in example 1 and 3. Typically one “thresholds” the elements of a wavelet matrix by
setting to zero all elements that are less than some small positive number € multiplied by the largest matrix
element namely

EZ_JﬂHP;+ lf”2 = &
The matrix sparsity .S, is then defined by [30]
s, = Mo Ne, 1009,
Ny

where N, is the total number of elements and NV, is the number of elements remaining after thresholding.
We define the maximum error as L” = max|u,, — u,,| to calculate the errors.
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Table 1. Sparsity and L™ error

X Threshold parameter (g) Sparsity (.S;) L* error u, L* error u,

J=2 0 0% 48x10°1 2.0x 1071
104 80.53% 2.6x 107 9.3x 107>

1073 84.04% 43%x1073 2.1%x 1073

J=3 0 0% 2.0x 1071 1.0x 10715
1014 90.46% 2.6x 107 9.3x 107>

1073 93.01% 43%x1073 2.1%x 1073

method in [1] 0 0% 3.0x 10714 3.1x 10714

Example 1. Consider the following system of integro-differential equations [1]

1
() + i (0) + [ty (1) = Bus(1))dr = (),

(0 + U50)+ [32+ ) (u, (1) = 21t = f(),

0

where
£i(x) = —+3x +8, f(x) = 21x+‘§‘,

with supplementary conditions
u(0)+uy(0) =1, w(1)+uy(1) = 10,
u,(0) +u5(0) = 1, wuy(1)+uy(1) = 7.
The exact solution of this equation is
u(x) = 3x + I, u,(x) = X +2x—1.
Table 1 shows the sparsity and L* error for r = 5, J = 2, 3 and different values of thresholding parameter,

using the presented method together with the method in [1]. Figure 1 shows the plot of the sparsity of the
matrix of coefficient for » = 5 and J = 3 after thresholding.

0 20 40 60 80 0 20 40 60 80
nz=493 nz=673

Fig. 1. Plots of sparse matrix after thresholding with € = 1073 (a)e= 1074 (b).
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Table 2. Sparsity and L™ error

b Threshold parameter (g) Sparsity (.S;) L* error u, L* error u,
J=2 0 0% 1.7 x 10714 22x 10714
107> 89.77% 1.3x 1077 2.2x107°

10~ 91.27% 1.2x107* 1.2x 1075

10-3 92.10% 1.0x 107 4.4x107*

J=3 0 0% 1.6 x 10714 22x 10714
107> 96.63% 1.3x 1077 2.2x107°

10~ 97.04% 1.2x107* 1.2x 1073

1073 97.26% 1.0x 1074 4.4x107*

Example 2. Consider the following system of integro-differential equations [3]

1

ui(x)— I(L—‘-l-é(—t—)+L—{-2-4(—t—))dt = g,

0

1 (5.1)
2
i) - (0 D)g = 6 X
0

for this example we have these conditions
Al l Al _1
MI(O) = Os ul(o) = 3! MZ(O) = 15 MZ(O) = 7’
also the exact solutions of problem (5.1) are

2
u,(x) = )—62—+§, u,(x) = x3—§.

Table 2 shows the sparsity and L” error for =5, /=2, 3 and different values of thresholding parameter,
by using the present method. Figure 2 shows the plot of the sparsity of the matrix of coefficient for » =5
and J = 3 after thresholding.

|
0 20 40 60 80 0 20 40
nz=238 nz=193

Jossss
60 80

Fig. 2. Plots of sparse matrix after thresholding with € = 1073 (a)e= 1073 (b).
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Table 3. Sparsity and L™ error

1481

X Threshold parameter (g) Sparsity (S;) L* error u, L* error u,
J=2 0 0% 4.0 x 1077 1.3x 1077
10~ 81.06% 2.6x107° 3.8x 1073
103 86.75% 2.5%x107* 8.6x 1073
102 89.07% 1.7 x 102 2.0 x 1072
J=3 0 0% 1.2x10°8 4.0x% 1072
10~ 92.31% 2.6x 1073 3.8x 1073
1073 94.83% 2.5x% 1074 8.5x 1073
102 96.27% 1.7 x 1072 2.0 1072
Example 3. Consider the following system of integro-differential equations
1
i’ (x) + 2u3(x) + w3(0) + O+ 1) (1) + n(0) + 2 (1))t = (),
0
1
U} (X) + Uy (xX) + us(x) + I(x3 + 74 5)Qu, (1) + uy(1) — us(1))dt = fo(x), (5.2)

0
1

() + () + () + [(5x7 + £+ 5) (1) = (1)~ ux()dt = (),

0

with supplementary conditions

u(0) +u,(0) +ui(0) = 3,

1y(0) + (0) = 0,
U3(O) = 8’

Here the forcing functions f;, i = 1, 2, 3, are selected so that

u (1) +uy(1)+ui(1) = sin(1) +4cos(1),
up(1) + up(1) = —cos(1),
us(1).

u(x) = (1 +x)sin(x), u,(x) = (1-x)cos(x), uz(x) = (1 +x)3,

are the exact solutions. Table 3 shows the sparsity and L* error for » = 5, J = 2, 3 and different values of
thresholding parameter, by using the presented method in the previous section. Figure 3 shows the plot of
the sparsity of the matrix of coefficient for r = 5 and J = 3 after thresholding.

(a)
0 T L |
20 T
40
'll
60 \‘ [} .
-
.,
80 \I S.
=01
100 _S‘ll
i
- “
120 m | T @ - !
0 20 40 60 80 100 120
nz =821

0
20
40
60
80

100

120

(b)

b N - 1

1
0 20

40 60 80 100 120
nz=1>592

Fig. 3. Plots of sparse matrix after thresholding with € = 1073 (a)e= 1072 (b).
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Table 4. L* error for example 4

Present method Method in [2]
N=12 g=10"3 N=150 N=100
u; 1.0x 1071 1.0x 10713 1.9x107° 2.5%x 1013
U, 1.0 x 10713 1.0 x 10713 22x107° 2.4x 10713
sparsity 0% 90.63% 0% 0%

Example 4. In this example, we consider the system of integral equations as [2]

1
i) = P () +u()dr+ 2+ 2,

/ (5.3)
U,(x) = jxt(ul(t) + u,(1))dt + x - %x +1,

0

with exact solution (u(?), u,(¥)) = (x + 1, x, + 1) given in [2].
Table 4 show that the L, error for » = 3, J = 2 and thresholding parameter € = 1073, using the present
method together with the method in [2]. As seen in Table 4, the present method is superior to method in [2].

CONCLUSION

In this paper, we presented a numerical scheme for solving system of Fredholm integro-differential
equations. This technique is based on Alpert multiwavelets and Galerkin—method. The method tested on
several examples taken from the literature to observe the efficiency of the new technique. The numerical
results given in the previous section demonstrate the accuracy of this scheme. The obtained results show
that this techniques can solve the problem effectively. Because of interpolating property of scaling func-
tions, this system of equations are solved rapidly by using this method. We used Matlab and Maple to solve
this system of equations.
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